Армированный каркас фундамента это металлическая конструкция, предназначенная для придания монолитному фундаменту дополнительных прочностных характеристик. Система скреплённых между собой арматурных стержней и сеток воспринимает в составе монолитной бетонной смеси нагрузки на растяжение. Схватившийся бетон способен выдерживать значительные нагрузки на сжатие.
В результате соединения свойств арматурного каркаса и бетона, получившаяся железобетонная конструкция устойчива к сжатию, растяжению, изгибу и излому.
Содержание:
- Нормативные документы
- Арматура оптимального разряда
- Расчёт армирования
- Раскладка арматурного каркаса
- Этапы работ
- Арматурный сортамент
- Расход металла
- Две причины неприменения сварки
- Фиксация проволокой
- Сборка вне опалубки
- Каркас для столбчатых и плитных фундаментов
- Армопояс
- Ростверк
- Минусы армирования каркаса
Нормативные документы
Применение арматурных каркасов для монолитных фундаментов ответственных сооружений регламентируется СНиП 2.03.01-84 с описанием требований, допусков и расчётов.
ГОСТ 10884-94 нормирует условия эксплуатации арматурных стержней и требования к ним.
Сортамент арматуры определяет все характеристики, необходимые для инженерных расчётов конструкций каркасов.
Арматура оптимального разряда
ГОСТ 5781 определяет сортамент марок и диаметров арматурной стали для изготовления армокаркасов в малоэтажном неответственном строительстве, называемый оптимальным разрядом.
В него входят классы А1(240), А2(300), А3(400), диаметр от 6 до 18 мм, профили гладкий, винтовой и «ёлочка».
Расчёт армирования
Пространственный арматурный каркас фундаментов малоэтажных индивидуальных жилых домов и других построек с незначительными требованиями, как правило, не требует сложных инженерных расчётов. Для такого строительства вполне достаточно адаптированного расчёта, исходящего из усреднённых нормативов.
Для ленточного фундамента с учётом места привязки, приложенной нагрузки и наличия усилений используется арматурные стержни класса А3 диаметром 14-18 мм с шагом сетчатой ячейки от 100 до 160 мм при диаметре проволоки 6-8 мм.
Общий принцип адаптированного расчёта определяет размер шага ячейки как десятикратный диаметр используемого арматурного стержня.
Раскладка арматурного каркаса
В качестве практического примера по устройству арматурного каркаса, с расчётами по раскладке и потребности в материалах, можно использовать возведение фундамента под одноэтажный дом размером 9 Х 9 м. Предположительная глубина фундамента 40 см, ширина 40 см.
Монтаж каркаса производится после установки опалубки, но без её окончательной фиксации. Каркас исполняется в виде сплошного армопояса в две нитки по периметру фундамента.
Этапы работы:
- На выровненное и утрамбованное песчаное основание по периметру дома разносится и укладывается арматура А3 диаметром 14 мм в две параллельные нитки.
- Арматура должна отступать от опалубки на 6 см с обеих сторон.
- По всей длине под арматурные стержни укладываются куски кирпича так, чтобы стержни возвышались над дном траншеи на 5-6 см.
- Из арматуры диаметром 10 мм нарезаются поперечные стержни длиной 30 см с расчётом их укладки через каждые 15 см.
- Вертикальные стержни нарезаются длиной 45 см с учётом их заглубления в землю на 5-10 см.
- В землю устанавливаются вертикальные стержни по 4 шт. в каждом углу.
- Вертикальные стойки фиксируются вязальной проволокой с нижними горизонтальными продольными стержнями и между собой.
- Далее продольные стерни соединяются между собой поперечными отрезками с фиксацией вязальной проволокой.
- На каждом поперечном соединении устанавливаются вертикальные соединительные стержни с аналогичным соединением проволокой.
- На высоте 30 см от нижнего ряда монтируются продольные, а затем и поперечные стержни верхнего ряда.
- Угловые соединения перевязываются внахлёст, конструкция каркаса должна составлять единое целое.
- Заключительным этапом окончательно устанавливаются и укрепляются щиты опалубки.
Арматурный сортамент:
Номинальный диаметр стержня, мм | Расчетная площадь поперечного стержня, мм2, при числе стержней | Теоретическая масса 1 м длины арматуры, кг | Диаметр арматуры классов | Максимальный размер сечения стержня периодического профиля | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | А240 А400 А500 | А300 | В500 | |||
3 | 7,1 | 14,1 | 21,2 | 28,3 | 35,3 | 42,4 | 49,5 | 56,5 | 63,6 | 0,052 | — | — | + | — |
4 | 12,6 | 25,1 | 37,7 | 50,2 | 62,8 | 75,4 | 87,9 | 100,5 | 113 | 0,092 | — | — | + | — |
5 | 19,6 | 39,3 | 58,9 | 78,5 | 98,2 | 117,8 | 137,5 | 157,1 | 176,7 | 0,144 | — | — | + | — |
6 | 28,3 | 57 | 85 | 113 | 141 | 170 | 198 | 226 | 254 | 0,222 | + | — | + | 6,75 |
8 | 50,3 | 101 | 151 | 201 | 251 | 302 | 352 | 402 | 453 | 0,395 | + | — | + | 9 |
10 | 78,5 | 157 | 236 | 314 | 393 | 471 | 550 | 628 | 707 | 0,617 | + | + | + | 11,3 |
12 | 113,1 | 226 | 339 | 452 | 565 | 679 | 792 | 905 | 1018 | 0,888 | + | + | + | 13,5 |
14 | 153,9 | 308 | 462 | 616 | 769 | 923 | 1077 | 1231 | 1385 | 1,208 | + | + | — | 15,5 |
16 | 201,1 | 402 | 603 | 804 | 1005 | 1206 | 1407 | 1608 | 1810 | 1,578 | + | + | — | 18 |
18 | 254,5 | 509 | 763 | 1018 | 1272 | 1527 | 1781 | 2036 | 2290 | 1,998 | + | + | — | 20 |
20 | 314,2 | 628 | 942 | 1256 | 1571 | 1885 | 2199 | 2513 | 2828 | 2,466 | + | + | — | 22 |
22 | 381 | 760 | 1140 | 1520 | 1900 | 2281 | 2661 | 3041 | 3421 | 2,984 | + | + | — | 24 |
Гнутая арматура для углов
В углах фундамента целесообразно использование горизонтальных стержней, изогнутых под прямым углом. Но в домашних условиях согнуть стержень толщиной 14 мм и выше невозможно.
Некоторые застройщики изгибают арматуру с помощью нагрева, но это категорически недопустимо из-за потери прочности металла. Профессионалы используют специальные гибочные станки, но для индивидуального застройщика они излишне дороги.
Расход металла
- Вычисляем периметр фундамента.
- Составляем схему армирования и подсчитываем количество стыков арматурных прутьев (стыки всегда идут внахлёст на величину, равную 30 диаметрам прута).
- Периметр умножаем на схему армирования, прибавляем сумму стыков и добавляем к этому ещё 10% от получившейся величины.
Пример
Нижний горизонтальный ряд стержней в две нитки 9 Х 2 Х 4 = 72 п.м. Верхний аналогичный ряд 72 п.м. Всего арматуры диаметром 14 мм х 144 п.м.
Нижние и верхние поперечные отрезки арматуры: 6о шт. Х 2 Х 4 Х 0,3 м = 144 п.м.
Вертикальные стержни: 120 шт. Х 4 Х 0,45 м = 216 п.м
Всего арматуры диаметром 10 мм х 360 п.м
Две причины неприменения сварки
- Сварка соединений не производится из-за нагревания высокоуглеродистой стали и потери при нагреве до половины прочности. Кроме того, сварные соединения подвергаются большей коррозии.
- Сварка является жёсткой фиксацией, а приваренный участок арматурного стержня работает несовместно с остальной его частью. Возникают обособленные ненормальные напряжения и перераспределения нагрузок. Иными словами, каркас не работает и становится ненужным.
Фиксация проволокой
Для скрепления стержней в местах пересечения используется вязальная проволока от 0,5 до 2, 5 мм толщиной.
Вязка проволоки довольно трудоёмкий и длительный процесс, поэтому арматурщики придумали массу приспособлений для ускорения и облегчения своего труда. Чаще всего крючок для вязания изготавливается из проволоки диаметром до 12 мм. Самый простой крючок делают из сварочного электрода.
Сборка вне опалубки
Собрать каркас вполне возможно рядом с опалубкой. Сложность заключается в необходимости постоянного контроля за размерами каркаса, непосредственно в опалубке промеры почти не нужны.
Вторая проблема заключается в трудности последующей установки каркаса в опалубку, она тяжёлая и неудобная для переноски.
Каркас для столбчатых и плитных фундаментов
Для фундамента в виде плоской плиты сборка каркаса намного проще, так как исполняется в горизонтальной плоскости. Сам сборочный процесс аналогичен ленточному фундаменту.
Каркас для столбов фундамента выполняется вне его места установки. Для изготовления возможно применение различных приспособлений и специального инструмента.
Для небольших строений возможно вместо объёмных каркасов в фундаменте использование для упрочения здания армированных поверхностных поясов.
Армопояс
Технология армопояса аналогична изготовлению объёмного каркаса.
Но пояс монтируется по верхней отметке монолитного или блочного фундамента, что значительно снижает трудозатраты.
Назначение армопояса аналогично монтажу каркаса придание дополнительной прочности основанию здания.
Ростверк
Ещё одно применение арматурного каркаса в изготовлении балок для укладки под стены по столбчатым либо свайным фундаментам.
Ростверк изготовляется в опалубке необходимых размеров, установленной по отметке верха винтовых или монолитных столбчатых оснований. По сути это изготовление железобетонных пролётов в домашних условиях с применением деревянной щитовой опалубки.
Подбор толщин и марок арматуры производится по аналогии с каркасом для фундамента. В изготовлении ростверка без армирования не обойтись, но в целом устройство прогонов по винтовым сваям или бетонным столбам значительно дешевле монолитного ленточного фундамента. Особенно это актуально в строительстве домов облегчённого типа.
Минусы армирования каркаса
В недалёком прошлом монументальные строения возводились без какого-либо армирования. Применение арматурных каркасов стало настолько распространённым, что без него не стали строить даже сараи. На самом деле армирование не всегда оправдано. Главная причина — высокая цена на профилированный металл и применение арматуры приводит к значительному удорожанию строительства. Это не всегда учитывают индивидуальные застройщики, стремясь увеличить количество металла и диаметр арматурных стержней.
Использование металлических кладочных сеток при возведении стен тоже является разновидностью армокаркаса, но только плоской формы. Абсолютно не нужен каркас в фундаменте для возведения домов из сэндвич-панелей или по финской технологии.
В целом можно сформулировать вывод: арматурный каркас для фундамента позволит застройщику возвести дом по любой технологии и с применением самых тяжёлых строительных материалов с дополнительными гарантиями прочности и надёжности строения.
Статьи по теме: